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This paper deals with the application of smooth Karhunen–Loève decomposition (SKLD)

procedure applied to random fields. The SKLD is obtained by solving a generalized

eigenproblem defined by combining the covariance matrix of the random field with that

of the associated time-derivative random field. The main properties of the SKLD

Loève decomposition. The SKLD is then applied to the responses of randomly excited

vibrating systems in order to perform modal analysis. The resulting SKLD characteristics

are discussed, in the case of linear vibrating systems subjected to white noise excitation,

in terms of normal modes.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A new multivariable data-analysis method called the smooth orthogonal decomposition (SOD) method was recently
proposed by Chelidze and Zhou [1]. SOD is defined, not appropriately since it is not a proper orthogonal decomposition
(POD), as the POD resulting from a maximization problem combined with scalar time series measurements subjected to a
minimization constraint involving the associated time derivative of the time series. The definition given is for discrete-time
and relies on the definition of a smoothing operator, the constraint used in Ref. [1]. The SOD method can be used to extract
normal modes and natural frequencies from multi-degree-of-freedom vibration systems. Free and forced sinusoidal
responses have been studied in Ref. [1] and randomly excited systems have been analyzed in Ref. [2]. From a different
perspective, it is also discussed in Refs. [3,4].

In this paper, smooth orthogonal decomposition is formulated in terms of a smooth Karhunen–Loève (KL)
decomposition (SKLD) for analyzing (continuous-time) random fields. The SKLD is performed by solving a generalized
eigenproblem defined in terms of the covariance matrix of the random field and that of its time-derivative. The main
properties of the SKLD are described and compared with the classical Karhunen–Loève decomposition. The SKLD is applied
to the responses of randomly excited vibrating systems in order to perform modal analysis. The resulting SKLD
characteristics are discussed, in the case of vibrating linear systems subjected to white-noise excitation, in terms of the
normal modes.

2. Smooth Karhunen–Loève decomposition

Let fUðtÞ; t 2 Rg be a Rn-valued random process indexed by R. We assume fUðtÞ; t 2 Rg to be a zero-mean second-order
stationary process that admits a time derivative process f _UðtÞ; t 2 Rg which is also a second-order stationary process. We
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take RU ¼ EðUðtÞT UðtÞÞ and R _U ¼ Eð _UðtÞT _UðtÞÞ to denote the covariance matrices of fUðtÞ; t 2 Rg and f _UðtÞ; t 2 Rg,
respectively. These matrices, by the hypothesis of stationary process, are time-invariant. We assume they are symmetric
positive-definite matrices.

2.1. Decomposition principle

Based on the Karhunen–Loève theory [5–11], fUðtÞ; t 2 Rg and f _UðtÞ; t 2 Rg can be decomposed into

Uðt;yÞ ¼
Xn

k¼1

xkðt; yÞwk (1a)

_Uðt; yÞ ¼
Xn

k¼1

Zkðt; yÞRk (1b)

where the n-vectors wk (respectively, Rk) solve the eigenproblem

RUwk ¼ lkwk ðrespectively; R _URk ¼ mkRkÞ (2)

and the random processes fxkðtÞ; t 2 Rg (respectively, fZkðtÞ; t 2 Rg) are given by xkðt; yÞ ¼ Uðt; yÞTwk (respectively,
Zkðt; yÞ ¼ Uðt; yÞTRk).

Note that the variable y has been used as a reminder that, fUðtÞ; t 2 Rg being a random process for fix t, UðtÞ is a random
variable defined on the space of random events and Uðt; yÞ denotes one realization of the random variable; y will be omitted
from now on.

The main properties of the KLDs (1) are
�
 ðwkÞk and ðRkÞk are orthogonal basis of Rn,

�
 Eðxk1

ðtÞxk2
ðtÞÞ ¼ lk1

dk1;k2
and EðZk1

ðtÞZk2
ðtÞÞ ¼ nk1

dk1;k2
, where dk1;k2

is the Kronecker delta,

�
 the decompositions (Eq. (1)) satisfy the optimality relations

E UðtÞ �
Xp

k¼1

xkðtÞwk

�����

�����
2

0
@

1
A ¼

Xp

k¼1

lkpE UðtÞ �
Xp

k¼1

~xkðtÞBk

�����

�����
2

0
@

1
A (3)

E _UðtÞ �
Xp

k¼1

ZkðtÞRk

�����

�����
2

0
@

1
A ¼

Xp

k¼1

mkpE _UðtÞ �
Xp

k¼1

~ZkðtÞBk

�����

�����
2

0
@

1
A (4)

for any integer ppn and any arbitrary orthogonal basis ðBkÞk of Rn, (see Ref. [10]).

The eigenvalues (lk and mk) are called the Karhunen–Loève values (KLVs), the eigenvectors (wk and Rk) are called the
Karhunen–Loève modes (KLMs), and the scalar random processes (fxkðtÞg and fZkðtÞg) are called the Karhunen–Loève
components (KLCs).

As described in Ref. [12], the KLMs, wk, of fUðtÞ; t 2 Rg generally differ from the KLMs, Rk, of f _UðtÞ; t 2 Rg and hence the
KLD of f _UðtÞ; t 2 Rg generally differs from the time derivative of Eq. (1a)

_UðtÞ ¼
Xn

k¼1

_xkðtÞwk (5)

A necessary condition for a vector to satisfy the two eigenproblems (2) is that the vector must solve the generalized
eigenproblem

RUCk ¼ nkR _UCk (6)

The generalized eigenproblem (6) is a statistical version (for continuous-time random process), of the generalized eigenvalue
problem introduced in Ref. [1] to characterize the SOD, what constitutes a major difference. In definition (6) only the
covariance matrices RU and R _U are used, no other operator is necessary. The idea comes from Ref. [12]. The results are, of
course, similar to the ones presented in Refs. [1–3], but now, since one relies on the covariance matrices, one has a powerful
computation tool, not available before.

The smooth Karhunen–Loève decomposition of the random field will then be given by

UðtÞ ¼
Xn

k¼1

zkðtÞCk (7)

where the vector Ck solve the generalized eigenproblem (6).
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In this new definition, the following notation is used: the eigenvalues nk are called the smooth Karhunen-Loève values
(SKLVs), the eigenvectors Ck are called the smooth Karhunen–Loève modes (SKLMs), and the scalar random processes
fzkðtÞg are called the smooth Karhunen–Loève components (SKLCs).

In line with the approach proposed in Ref. [1], the SKLD can also be defined from a constrained variational problem in
which the SKLMs are described as

max
C2Rn

EðUðtÞTCÞ2

Eð _UðtÞTCÞ2
¼ max

C2Rn

CT RUC

CT R _UC
(8)

Observe we can maximize in the unit ball, Bð0;1Þ 2 Rn, instead of Rn, with the same result, [13]. The objective function
used here differs significantly from that used to define the KLD (see Ref. [14]). Here the denominator of the objective
function takes the covariance matrix of the time-derivative process f _UðtÞ; t 2 Rg into account (which justifies the name
smooth KLD). The solutions to Eq. (8) are given by the eigenproblem (6).

2.2. Some properties of the SKLD

2.2.1. SKLV, SKLM, and SKLC properties

Since the matrices RU and R _U are symmetric positive-definite matrices, all the SKLVs (eigenvalues) nk are strictly
positive and the set of vectors Ck (the SKLMs) constitutes a basis which is orthogonal with respect to both RU and R _U. Note
that the SKLM are unique to a scaling constant.

The SKLCs of fUðtÞ; t 2 Rg are given by

zkðtÞ ¼
CT

k RUUðtÞ

CT
k RUCk

¼
CT

k R _UUðtÞ

CT
k R _UCk

(9)

Note that the scalar processes fzkðtÞ; t 2 Rg can be defined from either RU or R _U.
As expected, the scalar processes fzkðtÞ; t 2 Rg are correlated

EðzkðtÞzlðtÞÞ ¼
CT

k RURURUCl

CT
k RUCkC

T
l RUCl

¼
CT

k R _URUR _UCl

CT
k R _UCkC

T
l R _UCl

(10)

The SKLVs do not depend on the energy distribution, and the SKLD does not satisfy the optimality relationship (3).

2.2.2. Linear transformation of the SKLD

Let fVðtÞ; t 2 Rg be a Rn-valued random process defined as

VðtÞ ¼ AUðtÞ (11)

where A is square invertible matrix.
From the relationship

RV ¼ ARUAT and R _V ¼ AR _UAT

it can be shown that the SKLVs of fVðtÞ; t 2 Rg coincide with those of fUðtÞ; t 2 Rg and the sets of the SKLMs comply with
the relationship

CkðVÞ ¼ A�TCkðUÞ (12)

where CkðUÞ (respectively, CkðVÞÞ denotes a SKLM of fUðtÞ; t 2 Rg (respectively, fVðtÞ; t 2 Rg). Lastly, in line with (9), the
SKLCs are invariant with respect to the linear change of variables if and only if AAT

¼ I.

2.3. SKLD in practice

To draw up the SKLD, the covariance matrices of fUðtÞ; t 2 Rg and f _UðtÞ; t 2 Rg are required. These matrices are known as
the characteristics of the random processes but they can also be approximated by sampling fUðtÞ; t 2 Rg and f _UðtÞ; t 2 Rg or
by simply sampling one of the processes fUðtÞ; t 2 Rg or f _UðtÞ; t 2 Rg. The procedure presented in Ref. [2] corresponds to the
second case.

3. Relations between SKLD, KLD, and linear normal decomposition

Consider a discrete mechanical system with d degrees of freedom. Let UðtÞ be the displacement vector, UðtÞ is assumed to
obey the equations of motion

M €UðtÞ þ C _UðtÞ þ KUðtÞ ¼ FðtÞ (13)
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where M, C, and K are d� d symmetric square matrices and the excitation vector, fFðtÞ; t 2 Rg, is a random-vector process.
The linear normal modes (LNM) are classically defined in terms of the free responses of the associated undamped

system as follows:

KUk ¼MUkX
2
k

where U ¼ ½U1 � � �Ui � � �Ud� denotes the modal matrix with the normalization condition UT MU ¼ I, which means that
UT KU ¼ X2

¼ diagðo2
i Þ; o

2
i and Ui denote the squared natural frequencies and the associated normal mode vectors.

Using the normal mode vectors as the basis for representation of displacement field, the modal-displacement vector
Q ðtÞ defined by

UðtÞ ¼ UQ ðtÞ ¼
Xd

i¼1

UiQ iðtÞ (14)

satisfies the following second-order differential equation

€Q ðtÞ þH _Q ðtÞ þX2Q ðtÞ ¼ UT FðtÞ (15)

where H ¼ UT CU.
3.1. Theoretical results

Here we focus on the steady-state response of Eq. (13) or (15) when the damping is proportional (i.e., UT CU ¼
diagð2tioiÞ is also diagonal) and the excitation is a zero-mean white-noise random excitation (i.e., RF ðtÞ ¼
EðFðt þ tÞFT ðtÞÞ ¼ SFdðtÞ, where the intensity SF is a symmetric constant matrix).

If the matrix UT SFU is diagonal (i.e., if the modal-excitation terms UT
i FðtÞ in Eq. (15) are uncorrelated) then, as

established in Ref. [12], the covariance matrices RQ and R _Q of the stationary responses fQ ðtÞ; t 2 Rg and f _Q ðtÞ; t 2 Rg of
Eq. (15) will be diagonal. Hence the SKLMs associated with the process fQ ðtÞ; t 2 Rg will be equal to the vector of the
canonical basis of Rd and the SKLVs will be given by the diagonal terms of the diagonal matrix R�1

_Q
RQ ¼ ðX

2
Þ�1. Now using

the linear relation Eq. (14), it can easily be established that the SKLVs of fUðtÞ; t 2 Rg coincide with the SKLVs of fQ ðtÞ; t 2 Rg
and that the SKLMs of fUðtÞ; t 2 Rg are given by U�T . This relationship is determined up to a multiplicative constant.

It is worth noting that, as indicated in Ref. [1], no assumptions about the mass matrix M are required to relate the LNMs
to the SKLMs. However, if M ¼ mI, where I denotes the identity matrix, it is clear that the SKLMs coincide with the KLMs,
which, of course, coincide with the LNMs.

To summarize, one of the main advantages of the SKLD is that it gives the natural frequencies inverting the SKLVs (a
characteristic which cannot be easily obtained from the KLD) and the normal modal vectors inverting the transpose of the
SKLM matrix.
3.2. Example

The example used in Ref. [2] to illustrate the efficiency of the SOD for performing modal analysis on randomly excited
systems can be analyzed with the tool presented here. All the units are in the SI system, and we do not show them.

The system consists of a finite chain of eight mass points linked together by a series of identical linear springs and
dampers. The first mass is attached to a fixed point by a linear spring and a linear damper, and the last mass is free. All the
masses are equal to 1 except the first one, which is equal to m (m40), and the stiffness coefficients of the strings are all
equal to 1. The corresponding equation of motion has the form (13), where

M ¼

m 0 0 . . . 0 0

0 1 0 0 0

0 0 1 0 0

..

. ..
.

0 0 0 1 0

0 0 0 . . . 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

and K ¼

2 �1 0 . . . 0 0

�1 2 �1 0 0

0 �1 2 0 0

..

. ..
.

0 0 0 2 �1

0 0 0 . . . �1 1

0
BBBBBBBBB@

1
CCCCCCCCCA

(16)

The damping matrix is taken to be C ¼ 2t1o1M with t140, which ensures that the damping is proportional and sets the
damping ratio in the first linear mode.

The system is first assumed to be excited by a standard vector-valued white-noise process with matrix intensity
SF ¼

1
2 Kþ C. This choice ensures that, for all values of m, UT SFU will always be diagonal. If m ¼ 1, both the KLD and the

SKLD procedures give access to the LNMs. However, if ma1, the KLMs can differ from the LNMs, whereas the SKLD always
give the LNMs and the corresponding frequencies. These results are illustrated in Fig. 1. The modal assurance criterion
(MAC) [15] was used to compare the LNMs and the LNM values predicted by the KLD method and the SKLD method.
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The MAC between two vectors U and V is defined by

MACðU;VÞ ¼
jUT V j2

ðUT UÞðVT VÞ
(17)

With t1 ¼ 0:01 and ten values of the mass m, Fig. 1a,b gives the maximum MAC values obtained in each LNM with

max
k¼1;...;8

MACðFi;F
pred
k
Þ (18)

where Fpred
k

denotes the LNMs predicted using the KLD method (upper script KLM) and the SKLD method (upper script
SKLM). The covariance matrices RU and R _U of the stationary responses were obtained by solving the associated
Lyapounov’s equations (see Ref. [10]). The efficiency of the KLD method for approximating the LNM is highly sensitive to
the extent to which the mass matrix differs from the identity matrix. The greater this difference is, the more the KLMs differ
from the LNMs. A similar pattern occurs at high damping levels.

It is now assumed that the system is excited by a white-noise process applied to the first mass, i.e.

FðtÞ ¼ ð10 � � �0ÞT f ðtÞ ¼ Pf ðtÞ (19)

where ff ðtÞ; t 2 Rg is a white-noise process with intensity S0ð40Þ. Now SF ¼ S0PPT and hence UT SFU ¼ ðF1iF1jÞ is not a
diagonal matrix. Based on the results established in the previous section, the SKLD do not predict the modal parameters
accurately.
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Fig. 1. The maximum MAC values (18) obtained between the LNM and the predicted values (KLD approach (a) and SKLD approach (b)) on the system with

t1 ¼ 0:01 and various mass values m excited by a vector valued non-correlated white-noise excitation. The relative error between the natural frequencies

and the corresponding values obtained with SKLD (c) (first mode: �, second mode: �, third mode:þ, fourth mode:�, fifth mode: &, sixth mode: 	, seventh

mode: /, eighth mode: .).
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Fig. 2. The maximum MAC values (18) obtained between the LNM and the predicted values one (KLD approach (a) and (d), SKLD approach (b) and (e)) on

the system with t1 ¼ 0:01 (a–c) and t1 ¼ 0:8 (d–f) and various mass values m excited by a white-noise process applied to the first mass. The relative error

between the natural frequencies and the corresponding values predicted by the SKLD (c, f) (first mode: �, second mode: �, third mode: þ, fourth mode: �,

fifth mode: &, sixth mode: 	, seventh mode: /, eighth mode: .).
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Fig. 3. The LNMs (solid line), the KLMs (dash dot line), the SKLMs (dotted line) and the modes approximated from the SKLMs (dashed line) in the system

with t1 ¼ 0:01, and m ¼ 3, excited by a white-noise process applied to the first mass.
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With t1 ¼ 0:01 and for ten values of the mass m, the maximum MAC (18) values are shown in Fig. 2a,b. It is clear that
the fact that UT SFU is not a diagonal matrix does not affect the quality of the LNM predictions obtained with the SKLM.
However, at higher damping levels, (t1 ¼ 0:8), the SKLD shows a loss of efficiency (Fig. 2d,e).

For modal analysis purpose, the SKLD can also be used to assess the natural frequencies. The efficiency of the procedure
is also illustrated in Fig. 2, where the relative errors between the natural frequencies and their predicted values are plotted
(Fig. 2c,f). At small damping level, the relative error is numerically acceptable (
 10�8) in comparison with the ideal case
(
 10�14 see Fig. 1c). At large damping level, the error increases reaching 20% in the first mode (see Fig. 1f). This theoretical
finding is in agreement with the numerical study presented in Ref. [2].

Lastly, it is worth comparing in the case of this example all the vectors introduced in the previous discussion: the LNMs,
the KLMs, the SKLMs, and the LNM approximated by the SKLD. The case where t1 ¼ 0:01 and m ¼ 3 is presented in Fig. 3.
As was to be expected (see Fig. 2 at m ¼ 3), the LNM values predicted by the SKLD are similar to the LNM values, and only
the first four KLMs differ significantly from the LNMs. One rather surprising finding obtained is the behavior of the SKLMs
which are otherwise similar to the LNM but differ considerably at the first mass, where there is mass inhomogeneity
(m ¼ 3). We also changed the place of the inhomogeneity and the position of the forcing, always with similar results. So,
the result shown is representative.

4. Conclusion

There are several discussions in the literature about the interpretation of POD, of its relation with normal modes, and
applications of these concepts to problems [7,9,16–20]. In this study, the smooth orthogonal decomposition method
introduced by Ref. [1] is formulated in terms of a smooth Karhunen–Loève decomposition to analyze continuous-time
random fields. The SKLD is obtained solving a generalized eigenproblem defined by combining the covariance matrix of the
random field with that of the associated time-derivative random field. This definition avoids the use of any smoothing
operator and is valid for continuous time. Besides the theoretical simplicity, the definition has several computation
advantages, as, for example, the use of Lyapounov’s equations to compute the covariances (see Ref. [10]). The SKLD does not
have the best decomposition properties of the Karhunen–Loève decomposition. In the context of modal analysis (without
excitation data), the SKLD has several advantages with respect to KLD. If the modal forcing components are not correlated
and if the damping is proportional, it is possible to estimate, without condition on the mass distribution, the resonance
frequencies and normal modes directly. This is true independently of the damping level. Note that if the modal forcing



ARTICLE IN PRESS

S. Bellizzi, R. Sampaio / Journal of Sound and Vibration 325 (2009) 491–498498
components are correlated, the efficient of the SKLD method to estimate resonance frequencies and normal modes rapidly
decreases when the damping level increases.
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and Vibration 9 (4–5) (2002) 177–192.
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